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CALCULATION OF LAYERED SHELLS WITH ACCOUNT OF THE
NONLINEAR DISTRIBUTION OF DISPLACEMENTS

Introduction

Layered shells, which were made of high-strength composite materials
with different stacking layers, are widely used in aviation technology as
elements of the lifting surfaces of aircraft, as well as in many other industries.
Thus, the improving of the calculating methods in heterogeneous layered
structures is an actual task. Along with the methods of nondestructive testing,
flaw detection of structures using hardware techniques, the numerical methods,
which allow predicting the possible collapse of the structure are widely used.
There is a considerable number of publications devoted to the calculation of
layered structures [1-4], but previously discussed studies did not take into
account the possibility of studying the work of each layer separately, which is
important when different boundary conditions are tasked on each layer
separately.

Problem statement

Lets consider an element of a layered shell, which consists of thin hard
layers and soft bearing filler, which is located between them. The displacement
of points of bearing layers presented in the form :

u (o, 0,2) =ud” (o, 0,) + 20" (o, a,)
v (o, 0,,2) =v{" (o, 0,) + 205 (0, 00,)

w (a,00,,2) = W (o,0,), n=12 (1)

Where 9{") and 9(2"), n=1,2 are the rotation angles of the normal in
load-bearing layers on the planes:
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where u(()”), v(()"), w(()"), n=1,2 — are the displacement components of points of

the middle surface of the bearing layers in the direction of the coordinate axes in



the adopted system of coordinates. R, , R, —are the respective radii of curvature.
We accepted the nonlinear distribution of displacements for the filler.
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The stresses in the bearing layers are represented in the form [1]
{G(”)} — [G(n)]{g(n)}’ n=12, @)
where {c"} = {c\",c{", 72} -are the components of the stress tensor;

{1 ={e", &,y W} - are the components of strain tensor
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We have for an isotropic material bearing layers
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For the filler as components of the vectors {c} and {¢} that appear

3 3 3 3
(o} ={rid, 18,0,

7} = iy e (6)
According to Hooke's law:
{62} =[G (e} (7)

In the case of coincidence of the axes of orthotropy with the coordinate
lines the matrix [¢®] has a diagonal structure
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where for a uniform thickness of the material we have
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The potential energy of sandwich plates deformation is the sum of
potential energies of deformation of the bearing layers and filler:
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Here 1s
(6} = {6, 115"} = (e, el YWy, n=1,2
(o) = ot = e

Numerical solution method

We can approximate the deflection of n-th thin base layer within each
subregion using an incomplete cubic polynomial [6]

win =w L+ WL, + WLy + a{" L} L, + aS" L} L, +
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Here L;,1=1, 2, 3 are the coordinates, given by [6]:
1
L :Z(ai+bix+ciJ’) (13)
Where
G=X)3=% 5 b=y, =y q=x-x, (14)

The displacement of the median surfaces of bearing layers and the filler
are presented in the form of linear polynomials :

u(()',? —uI")L +u§")L +u§”)L2 ; (15)

v =y L+ VWL + VL, : (16)



Then the total potential energy of each triangle can be written in the local
coordinate system in the form:
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The total potential energy of the shell of the system will be the following:

> (1) 2 () =5 (i)~ (07, € R (18)

Where K is the positive definite symmetric matrix of order N and 7 is the
N — dimension vector of nodal external load. Then the task of determining the
stress-strain state structures can be represented as minimization of a quadratic
functional

i€ R )= inf > (7) (19)

It is necessary to determine the natural frequencies and corresponding
vibration modes during the calculating the stress-strain state of structural
elements exposed to vibration. Finding the main natural frequency can be
reduced to the minimization problem, where the functional is determined by the
ratio of the Rayleigh-Ritz method:

®° = min , VEV. (20)

Here II(v) 1s the peak value of strain energy, T (v) — is a quantity which is
proportional with the factor ® *to amplitude value of kinetic energy.

Using approximations (11), (15), (16) finite functional relations Rayleigh
can be represented as

F(vy) = ; Vhe V. (21)

It is proposed to use the wise descent method (ICS) [7] for minimization
of the functional (18), (21) in the present work. The choice of this method stems
from the fact that its application is not necessary in the formation and storage of
mass and stiffness matrices of large dimensions, the numbering of nodes for
sampling of arbitrary, it greatly reduces the memory requirements of a PC. Wise
descent method is iterative and sustainable method, where rounding errors have
little influence on the accuracy of the final result. The k+1 approximation is
constructed in the form
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is a vector of unknown displacements; is the unit vector in the direction of
the components ik DA 14 the step; P is the parameter of acceleration of the
setting of an iterative process [7].

Step size is found from the condition for maximum reduction of
functionals (18), (21).

As a test the problem of bending and natural vibrations of layered panels
of square, trapezoidal and rectangular shapes with different conditions of
consolidation are solved. The results are compared with the results obtained on
the basis of experimental, numerical and analytical methods [3, 8].Maximum
number of triangular elements in the problems amounted was no more than
1000. Maximum number of iterations was less than 50. The error in the
determination of deflection in the center of the plates was not more than
0,2%.Data on the identification of the main natural frequencies were compared
with results obtained by an asymptotic method of Bolotin. After 120 iterations,
the maximum error in determining the basic natural frequency was 4,3%.

Conclusions

In conclusion, we note the following positive aspects of proposed
approach. In the present triangular element of the layered structure using various
approximations of the displacement of bearing layers and filler allows you to
simulate various types of fastening and joining of layered structures. Thus, one
layer can be freely fixed, and the other is rigidly fixed, in one layer there can be
bolted connection, but not in others, etc. In addition, through the use of these
approximations movements, it was managed to reduce the order of the element
in comparison with other finite element models [4, 5].

Due to the fact that when using the method of descent-wise is not
necessary in the formation and storage of mass and stiffness matrices, the
numbering of nodes for arbitrary sampling area, which significantly reduces the
need for a computer memory. As the wise descent method is an iterative
algorithm, rounding errors have a small effect on the accuracy of the final result.
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