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LMI-BASED FEEDBACK SUPPRESSION OF EXTERNAL
DISTURBANCES FOR THE RUAV

Introduction

Development of rotorcraft-based unmanned aerial vehicles (RUAV) is
one of the priorities in aircraft industry nowadays. Unlike fixed-wing aircrafts,
helicopters can describe vertical flight trajectories, including hovering and
vertical take-off and landing (VTOL). Due to their versatile maneuverability
they can be widely used in different spheres for numerous practical tasks
realization. Application of RUAV allows avoidance of any risks for the crew in
extreme and dangerous conditions at comparatively law costs for their
maintenance and exploitation.

Suppression of atmospheric disturbance acting the RUAV (stochastic
turbulent wind, discrete wind gusts, etc.) is extremely important to perform
given tasks ordered by the ground-based command station via wireless
communication with high quality and efficiency.

In modern rotorcrafts this problem is usually solved with the help of
stability and controllability augmentation system (SCAS) design [1-5]. One of
the effective methods of robust control theory of SCAS synthesis by static
output feedback (SOF) 1is the Linear Matrix Inequalities (LMI)
method [1-4, 6-8].

Statement of the Problem

In this paper SOF control (fig. 1) is applied to the Berkeley RUAV [9]
stabilization in the hovering flight taking into account the actuators dynamics
and accelerometers incorporation into the measurement unit of the flight control
system.

The algorithm of the SOF controller design and its gain matrix K
determination is implemented by LMI method and includes three main stages
[1-3]:

L. LMI-based linear-quadratic (LQ) problem solution and stabilizing
controller synthesis including the procedure of the feedback matrix K spectral
norm restriction in agreement with the constraint (1) [1-4, 6-7]:

6K <, (1)
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where H,, (s,K)— matrix of transfer functions (TF) which describes the

relationship between the input exogenous disturbance w and output vector z of
the closed-loop system, ||-| — H,-norm, Y — scalar which represents the degree

of exogenous disturbance suppression.
II.  Inverse LQ problem solution for K and determination of weighting
matrices Q, R, N of the quadratic functional J [1-4]:

J:I[XT uT]L\?T i}{lﬂdt.- 2)

II. H,—optimization of the SCAS by the SOF loop shaping.
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Fig. 1. Block diagram of the SCAS
Plant — control object, K — SOF controller, w — vector of exogenous
disturbance,
u — control vector, z — output vector which is used to evaluate the closed-loop
system performance, y — output vector which is used for SOF loop shaping, ¢

— error, 1 —reference signal.

System Description

In this paper linear time-invariant (LTIT) multi-input multi-output (MIMO)
model of Berkeley RUAV which is valid for hovering is considered [9].

A 6-degrees-of-freedom linear rigid body rotorcraft model is augmented
with the first-order approximation of servorotor or Bell-Hiller Stabilizer (BHS)
system dynamics [10] which modifies the RUAV dynamics significantly and has
a pair of paddle-shaped blades that are connected to the main blades by a series
of mechanical linkages. Currently, almost all model-scale helicopters are
equipped with a BHS, a mechanical blade pitch control system that improves
helicopter stability. From a control point of view, the stabilizing bar can be
interpreted as a dynamic feedback system for the roll and pitch rates. The BHS
improves stability characteristics of the RUAV. The most important role of the



servorotor is to slow down the roll and pitch response so that human pilot on the
ground can control the small RUAV with the remote controller [9, 10].

The peculiarity of the LTI MIMO model of the RUAYV is the absence of
its separation on the model of longitudinal and lateral motion which is especially
justified for hover.

The set of differential equations describing dynamics of the system in
time-domain is represented by (3):

Xx=Ax+B,u+B,w,
yszx+Dyuu+Dyww, (3)
z=C,x+D_,ju+D,,w,

where x e R''"*!— state vector; ue R¥™_ control vector; ye R'™!— output

vector; W e R¥1_ vector of atmospheric disturbance which affects the RUAV in
horizontal and vertical plane (by three axes); ze R**! — output vector which is
used to evaluate the closed-loop system performance; A € R'"!', B, e R'™,

11x3 11x11 11x4 11x3 3x11 3x4
B, €R ,CYER ,DyueR ,DyweR , C,eR™", D,,eR™",

D, € R¥® — matrices which describe RUAV state-space model. Numerical

values of these matrices are given in the example below.
State vector of the RUAYV includes the following components [9]:

x=le v p g 9 0 a b w r rl,

N
here u,v,w — body-fixed linear longitudinal, lateral and vertical velocity
respectively; 0,¢ — pitch and roll angle respectively; g, p,r — pitch, roll and
yaw rate respectively; a,,b,— BHS flapping angles; r,— feedback gyro sensor

state.
Control vector consists of four components [9]:
u= luas Ups Ug urfb >
where u ,, u,, — main rotor and flybar cyclic inputs, #y— main rotor collective

input, u > tail rotor collective input.

T'1p
z:[ax a, aZ]T,

here a, = d_u; a, = @; a, = d_w — longitudinal, lateral and vertical acceleration
dt dt dt
respectively.
I. LMlI-based LQ problem solution

On this stage it is necessary to design stabilizing “minimal controller” K
which guarantees the constraint (1) for the system (3) at the state vector X



complete measurement. Minimal controller denotes additional requirement to
the gain matrix K spectral norm minimization.

Feedback controller’s spectral norms restriction allows restriction of the
matrix K coefficients that is very important to avoid or at less to diminish
probability of the actuator saturation [11].

The matrix of TF which describes the relationship between the input
exogenous disturbance w and output vector z of the closed-loop system is
determined by the formula:

HS, (s,K)=[C, +D,K]Is-A-B,K)'B, +D,,.

LMI-based determination of the feedback matrix K is implemented with
the next formula:

K=YQ".

In general this problem is reduced to the standard LMI Eigenvalue
problem [6] and a set of inequalities solution:

Z Y
{YT Q}>O’

AQ+QA! +B.Y+Y'Bl +B_RB! L
L ~-N~
A,=(A+B,K)+B_,RD. C,, B, =B,+B,RD. D
L=QC!+Yy'™D,,N=1+D_ RD! ,R=(y*I-DL D, ).
To solve this problem in MATLAB environment the procedure gevp is
used [7] for the given value y (1).

Z <A, }SO,Q>0,

I —eye matrix

zu ?

zu

II. Inverse LQ problem solution

On this stage it is necessary to solve inverse LQ problem for the designed
on the previous stage controller K using the algorithm given in [1-3].

Dynamics of the system is described with the set of equations (3),
x(0) # 0. State matrix A, control matrix B:[BW Bu] and feedback gain

coefficient matrix K which satisfy the restriction Re A(A + BK )< 0 are given.

It 1s necessary to determine weighting matrices Q,R,N of the quadratic
functional J (2).
LMI-based algorithm of the inverse LQ problem solution includes the

procedure of the scalar A minimization at the next inequalities performance
[2-3]:

(A+BK)"P+PA +BK) +K'RK + NK + K'NT <0, 4)

g1 (|70 Y<A, S=B'P+RK+N. (5)



Thus matrices P, R, N, Y and corresponding value of the scalar A are
determined as the result of inequalities (4), (5) solution.

The procedure gevp is used to solve this problem in MATLAB
environment [7].

Matrix Q is determined as the result of the equation (13) solution [1-4]:

(A+BK)"P+PA +BK) +K'RK + NK + K'NT =—-Q.

I11. H,—optimization of the SCAS by the SOF loop shaping.

Likewise to [1-3] optimization task on this stage is:

i TSR

where [ — scalar which provides stability of the system:A, =A +upl,
Re(A 4 (A) <0, Ay~ eigenvalues of the stable state matrix A;

r - coefficient.
Scalar U is also an additional optimization parameter together with the

matrix K.
Control law for the system (3) is represented with the equation (7):

u=Ky, (7)

where y — output vector which is used for SOF loop shaping, K — gain

coefficients matrix of the stabilizing controller.
As the result of the optimization task (6) solution the matrix of optimal
gain coefficients of stabilizing SOF controller K can be determined.

Case Study

Efficiency of the introduced LMI-based algorithm of SCAS for BIBO
exogenous disturbance suppression is demonstrated for the Berkeley RUAV [9]
stabilization in the hovering flight taking into account the actuators dynamics
and accelerometers incorporation into the measurement unit of the flight control
system. The dynamic model of a single main rotor and tail rotor helicopter
equipped with a Bell-Hiller or Hiller stabilizing bar [10] which can be
interpreted as a dynamic feedback system for the roll and pitch rates.

As it was already mentioned above the most important peculiarity of the
LTI MIMO model of the RUAV is the absence of its separation on the model of
longitudinal and lateral motion which is especially justified for hover. One
deficiency of the given in [9] state-space model is the absence of the cross-
coupling from yaw to sideslip and roll.

Numerical values of the state-space matrices of the MIMO model (3) for
the Berkeley RUAYV are given in [9]:



[-0.0629 0 0 0 0 -g -g 0 0 0 0
0 0.0305 0 0 g 0 0 g 0 0 0
0.2978 —0.7061 0 O 0 O 40.361 237.42 0 0 0
1.3057 —-1.2199 0 O 0 O 220.18 —11.438 0 0 0
0 0 1 O 0 O 0 0 0 0 0
A= 0 0 0 1 0 0 0 0 0 0 0
0 0 0 -1 0 0 —43459 1.4487 0 0 0
0 0 -1 0 0 0 -15915 —-4.3459 0 0 0
0 0 0 0 0 0 =3.0523 —-15.063 —1.3453 0.2222 0
0 0 -00178 0 O O 0 0 1.1860 —2.9986 —22.126
i 0 0 0 O 0 O 0 0 0 3.1541 —9.5035_
T 0 0 0 0 ]
0 0 0 0
0 0 0 0
0 0 0 0 AL
0 0 0 0 AR.)
B,=| 0 0 0 0 3 Cy =] Ogx2-16x65 063 |5
0.5259 2.1922 0 0 AQ,)
22333 -0.0917 0 0 Opy95 1500
0 0 10.6446 0
0 0 44911 -103.335
0 0 0 0 |

B, =[-AGD -AG2) -AGY];
D,, =[B,(1,); B,(2,); Ogs3; B9 Oyl;
C, =[A():AQ.):A0,)]; D, =[B,(1,); B, (29 B,(.)].
here X(m,:) — row of a matrix X, m — ordinal number of the row; X(:n) -

column of a matrix X, n — ordinal number of the column; O ., I — zeros and

ixj 2

eye matrix of dimension ;i x j and 7 X7 respectively.
Taking into account accelerometers data @, a , a, the output vector is:

y=la, a, p g ¢ 6 a; b a  r Vfb]T-
Scalar y (1) which shows the degree of atmospheric disturbance
suppression limiting the matrix of TF HS_ (s,K)is set: y =1,5.
On the first stage feedback gain coefficient matrix K e R*!'of the
minimal controller is determined. Its spectral norm equals |K|| = 0,1645 .



As the result of the inverse LQ problem solution weighting matrices of
the quadratic functional J (2) are calculated. Their dimensions are: Q e R'"!!

R e R¥, NeR!™,

Coefficient r is set: » =107°.

As the result of H,—optimization of the SCAS by the SOF loop shaping
optimal gain coefficients matrix K € R**!' of the SOF controller is determined.
Its spectral norm: ”KHS =0,0221.

H,—optimal SOF controller K € R**!! satisfies the restriction (1):
”HSW(S,K)” ~1.355<7y,

Performance index (6) for the designed closed-loop SCAS including H,—
optimal SOF controller equals: J =2.865.
Scalar p=1.2131x107>.

Simulation of the designed SCAS

Simulation of the SCAS (fig. 1) was fulfilled in Simulink environment at
atmospheric disturbances which affect control system in real conditions.
Standard Discrete Wind Gust Model (Aerospace Blockset, Simulink) was used
to simulate discrete wind gusts acting the RUAV in hover in horizontal an
vertical plane accordingly to the USA standard MIL-F-8785C.

Numerical values which characterize simulated wind gusts are the next:

1) along the longitudinal axis: a, , =0,6872 m/sec’;

=0,6872 m/sec’;
= 0,8836 m/sec’.
Results of the designed SCAS simulation are introduced on fig. 2 —7.

2) along the lateral axis: a,,

in

3) along the vertical axis: a

z_in
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Conclusions

The introduced LMI- based algorithm allows efficient SCAS design for
the RUAV in hover. Designed H,—optimal SOF controller feedback controller

implementation shows high hovering performance. Small value of spectral norm
of the feedback controller unavailable the actuator saturation.

Results of simulation demonstrate rather efficient suppression of BIBO
exogenous disturbances of the RUAV in hover via feedback controller
application.
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