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Introduction

Development of rotorcraft-based unmanned aerial vehicles (RUAV) is 
one of the priorities in aircraft industry nowadays. Unlike fixed-wing aircrafts, 
helicopters can describe vertical flight trajectories, including hovering and 
vertical take-off and landing (VTOL). Due to their versatile maneuverability 
they can be widely used in different spheres for numerous practical tasks 
realization. Application of RUAV allows avoidance of any risks for the crew in 
extreme and dangerous conditions at comparatively law costs for their 
maintenance and exploitation. 

Suppression of atmospheric disturbance acting the RUAV (stochastic 
turbulent wind, discrete wind gusts, etc.) is extremely important to perform 
given tasks ordered by the ground-based command station via wireless 
communication with high quality and efficiency.

In modern rotorcrafts this problem is usually solved with the help of 
stability and controllability augmentation system (SCAS) design [1–5]. One of 
the effective methods of robust control theory of SCAS synthesis by static 
output feedback (SOF) is the Linear Matrix Inequalities (LMI) 
method [1-4, 6-8].

Statement of the Problem

In this paper SOF control (fig. 1) is applied to the Berkeley RUAV [9] 
stabilization in the hovering flight taking into account the actuators dynamics 
and accelerometers incorporation into the measurement unit of the flight control 
system. 

The algorithm of the SOF controller design and its gain matrix K
determination is implemented by LMI method and includes three main stages 
[1–3]:

I. LMI-based linear-quadratic (LQ) problem solution and stabilizing 
controller synthesis including the procedure of the feedback matrix K  spectral 
norm restriction in agreement with the constraint (1) [1–4, 6–7]:  
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where )K,(H C
zw s – matrix of transfer functions (TF) which describes the 

relationship between the input exogenous disturbance w  and output vector z  of 
the closed-loop system, 


 – H -norm,  – scalar which represents the degree 

of exogenous disturbance suppression.
II. Inverse LQ problem solution for K and determination of weighting 

matrices NR,Q,  of the quadratic functional J [1–4]:
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III. 2H –optimization of the SCAS by the SOF loop shaping. 

Fig. 1. Block diagram of the SCAS
Plant – control object, K – SOF controller, w – vector of exogenous 
disturbance, 
u – control vector, z – output vector which is used to evaluate the closed-loop 
system performance, y – output vector which is used for SOF loop shaping, e
– error, r – reference signal.

System Description 

In this paper linear time-invariant (LTI) multi-input multi-output (MIMO) 
model of Berkeley RUAV which is valid for hovering is considered [9].

A 6-degrees-of-freedom linear rigid body rotorcraft model is augmented 
with the first-order approximation of servorotor or Bell-Hiller Stabilizer (BHS) 
system dynamics [10] which modifies the RUAV dynamics significantly and has 
a pair of paddle-shaped blades that are connected to the main blades by a series 
of mechanical linkages. Currently, almost all model-scale helicopters are 
equipped with a BHS, a mechanical blade pitch control system that improves 
helicopter stability. From a control point of view, the stabilizing bar can be 
interpreted as a dynamic feedback system for the roll and pitch rates. The BHS 
improves stability characteristics of the RUAV. The most important role of the 



servorotor is to slow down the roll and pitch response so that human pilot on the 
ground can control the small RUAV with the remote controller [9, 10]. 

The peculiarity of the LTI MIMO model of the RUAV is the absence of 
its separation on the model of longitudinal and lateral motion which is especially 
justified for hover. 

The set of differential equations describing dynamics of the system in 
time-domain is represented by (3):













w,DuDxCz

w,DuDxCy

w,BuBAxx

zwzuz

ywyuy

wu

(3)

where 111x  R – state vector; 14u R – control vector; 111y  R – output 

vector; 13w R – vector of atmospheric disturbance which affects the RUAV in 
horizontal and vertical plane (by three axes); 13z  R – output vector which is 
used to evaluate the closed-loop system performance; 1111A  R , 411

uB  R , 
311

wB  R , 1111
yC R , 411

yuD R , 311
ywD R , 113

zC  R , 43
zuD  R , 

33
zwD  R – matrices which describe RUAV state-space model. Numerical 

values of these matrices are given in the example below. 
State vector of the RUAV includes the following components [9]:

 Tfbss rrwbaqpvu x ,

here wvu ,, – body-fixed linear longitudinal, lateral and vertical velocity 
respectively;  , – pitch and roll angle respectively; q , p , r – pitch, roll and 

yaw rate respectively; ss ba , – BHS flapping angles; fbr – feedback gyro sensor 

state. 
Control vector consists of four components [9]:
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where bsas uu , – main rotor and flybar cyclic inputs, u – main rotor collective 

input, 
fbru – tail rotor collective input. 

 Tzyx aaaz ,

here 
dt

dw
a

dt

dv
a

dt

du
a zyx  ;; – longitudinal, lateral and vertical acceleration 

respectively.

I. LMI-based LQ problem solution

On this stage it is necessary to design stabilizing “minimal controller” K
which guarantees the constraint (1) for the system (3) at the state vector x



complete measurement. Minimal controller denotes additional requirement to 
the gain matrix K  spectral norm minimization.

Feedback controller’s spectral norms restriction allows restriction of the 
matrix K  coefficients that is very important to avoid or at less to diminish 
probability of the actuator saturation [11].  

The matrix of TF which describes the relationship between the input 
exogenous disturbance w  and output vector z  of the closed-loop system is 
determined by the formula:
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LMI-based determination of the feedback matrix K  is implemented with 
the next formula: 

1YQK  .
In general this problem is reduced to the standard LMI Eigenvalue

problem [6] and a set of inequalities solution:
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To solve this problem in MATLAB environment the procedure gevp is 

used [7] for the given value   (1). 

II. Inverse LQ problem solution

On this stage it is necessary to solve inverse LQ problem for the designed 
on the previous stage controller K  using the algorithm given in [1–3].

Dynamics of the system is described with the set of equations (3), 
0x(0)  . State matrix A , control matrix  uw BBB  and feedback gain 

coefficient matrix K  which satisfy the restriction 0)BKA(Re   are given. 
It is necessary to determine weighting matrices NR,Q,  of the quadratic 
functional J (2).

LMI-based algorithm of the inverse LQ problem solution includes the 
procedure of the scalar   minimization at the next inequalities performance 
[2-3]:
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Thus matrices P, R, N, Y and corresponding value of the scalar   are 
determined as the result of inequalities (4), (5) solution. 

The procedure gevp is used to solve this problem in MATLAB 
environment [7]. 

Matrix Q is determined as the result of the equation (13) solution [1–4]:
QNKNKRKKBK)P(APBK)(A TTTT  .

III. 2H –optimization of the SCAS by the SOF loop shaping.

Likewise to [1–3] optimization task on this stage is: 
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where  – scalar which provides stability of the system: IAA  , 

0))A(Re(  A , 


 A – eigenvalues of the stable state matrix A ; 

r - coefficient. 
Scalar  is also an additional optimization parameter together with the 

matrix K .
Control law for the system (3) is represented with the equation (7): 

Kyu  , (7)

where y – output vector which is used for SOF loop shaping, K – gain 
coefficients matrix of the stabilizing controller.

As the result of the optimization task (6) solution the matrix of optimal 
gain coefficients of stabilizing SOF controller K  can be determined. 

Case Study

Efficiency of the introduced LMI-based algorithm of SCAS for BIBO 
exogenous disturbance suppression is demonstrated for the Berkeley RUAV [9] 
stabilization in the hovering flight taking into account the actuators dynamics 
and accelerometers incorporation into the measurement unit of the flight control 
system. The dynamic model of a single main rotor and tail rotor helicopter 
equipped with a Bell-Hiller or Hiller stabilizing bar [10] which can be 
interpreted as a dynamic feedback system for the roll and pitch rates.

As it was already mentioned above the most important peculiarity of the 
LTI MIMO model of the RUAV is the absence of its separation on the model of 
longitudinal and lateral motion which is especially justified for hover. One
deficiency of the given in [9] state-space model is the absence of the cross-
coupling from yaw to sideslip and roll.

Numerical values of the state-space matrices of the MIMO model (3) for 
the Berkeley RUAV are given in [9]:
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here :),X( m – row of a matrix Х, m – ordinal number of the row; n)X(:, -

column of a matrix Х, n – ordinal number of the column; jiO  , rrI  – zeros and 

eye matrix of dimension ji  and rr  respectively. 
Taking into account accelerometers data zyx aaa ,, the output vector is:

 Tfbzssyx rrabaqpaa y .

Scalar   (1) which shows the degree of atmospheric disturbance 

suppression limiting the matrix of TF )K,(H C
zw s is set: 5,1 . 

On the first stage feedback gain coefficient matrix 114K  R of the 
minimal controller is determined. Its spectral norm equals .1645,0K

s




As the result of the inverse LQ problem solution weighting matrices of 
the quadratic functional J  (2) are calculated. Their dimensions are: 1111Q R , 

44R  R , 411N R .

Coefficient r is set: .10 6r
As the result of 2H –optimization of the SCAS by the SOF loop shaping 

optimal gain coefficients matrix 114K  R  of the SOF controller is determined. 
Its spectral norm: 0221,0K

s
 . 

2H –optimal SOF controller 114K  R  satisfies the restriction (1):


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Performance index (6) for the designed closed-loop SCAS including 2H –
optimal SOF controller equals: 865.2J  . 

Scalar 5102131.1  .

Simulation of the designed SCAS 

Simulation of the SCAS (fig. 1) was fulfilled in Simulink environment at 
atmospheric disturbances which affect control system in real conditions. 
Standard Discrete Wind Gust Model (Aerospace Blockset, Simulink) was used 
to simulate discrete wind gusts acting the RUAV in hover in horizontal an 
vertical plane accordingly to the USA standard MIL-F-8785C.  

Numerical values which characterize simulated wind gusts are the next: 
1) along the longitudinal axis: 6872,0_ inxa  m/sec2;

2) along the lateral axis: 6872,0_ inya  m/sec2;

3) along the vertical axis: 8836,0_ inza  m/sec2.

Results of the designed SCAS simulation are introduced on fig. 2 –7. 



Conclusions

The introduced LMI- based algorithm allows efficient SCAS design for 
the RUAV in hover. Designed 2H –optimal SOF controller feedback controller 
implementation shows high hovering performance. Small value of spectral norm 
of the feedback controller unavailable the actuator saturation.

Results of simulation demonstrate rather efficient suppression of BIBO 
exogenous disturbances of the RUAV in hover via feedback controller 
application.  
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