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Introduction

Many modern angular rate sensors operate using sensing of the Coriolis 
force induced motion in vibrating structures. Such approach allows to avoid 
using expensive means of mechanisation as well as to increase long term 
reliability of sensors. Another benefit lays in the possibility to fabricate sensitive 
elements of such gyroscopes in miniature form by using modern microelectronic 
mass–production technologies. Such gyroscopes are frequently referred to as 
MEMS (Micro–Electro–Mechanical–Systems) gyroscopes. Being based on 
sensing of Coriolis acceleration due to the rotation in oscillating structures, 
Coriolis vibratory gyroscopes (CVGs) have a lot more complicated 
mathematical models, comparing to the conventional types of gyroscopes. One 
of such complication is a result of the useful signal proportional to the external 
angular rate being modulated with the intentionally excited primary oscillations 
[1–3]. From the control systems point of view, conventional representation of 
CVGs incorporates primary oscillation excitation signal as an input to the 
dynamic system, and unknown angular rate as a coefficient of its transfer 
functions [3]. As a result, conventional control and filtering systems design is 
practically impossible. At the same time, performances of CVGs are limited 
mainly due to the low signal–to–noise ratios. In view of this problem, optimal 
noise filter development is highly necessary. 

This paper demonstrates synthesis of an optimal sensor noise filter using 
Wiener approach. Contrary to the dynamic Kalman filtering approach, Wiener 
filters allow to be implemented using simple analogue electronics and yet be as 
efficient for the stationary sensor noises.

Problem formulation

In order to be able to synthesise optimal filters for CVGs the following 
major steps must be completed: a) development of the mathematical model in 
demodulated signals, b) obtaining system transfer functions where angular rate 
is an input, c) analysis of stochastic disturbances affecting performances of 
CVGs, d) synthesis of optimal filters based on the obtained earlier transfer 
functions with respect to the spectral characteristics of stochastic disturbances, 
and finally, e) numerical simulations proving the performances of the optimal 
filters.



Demodulated dynamics and transfer function of CVGs

In the most generalized form, motion equations of the CVG sensitive 
element both with translational and rotational motion could be represented in the 
following form [4]:
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Here 1x  and 2x  are the generalized coordinates that describe primary 
(excited) and secondary (sensed) motions of the sensitive element respectively, 

1k  and 2k  are the corresponding natural frequencies, 1  and 2  are the 
dimensionless relative damping coefficients,   is the measured angular rate, 
which is orthogonal to the axes of primary and secondary motions, 1q  and 2q

are the generalized accelerations due to the external forces acting on the 
sensitive element. The remaining dimensionless coefficients are different for the 
sensitive elements exploiting either translational or rotational motion. For the 
translational sensitive element they are 1 2 1d d  ,  3 2 1 2d m m m  , 

 1 2 1 22g m m m  , 2 2g  , where were 1m  and 2m  are the masses of the 

outer frame and the internal massive element. In case of the rotational motion of 
the sensitive element, these coefficients are the functions of different moments 
of inertia (for greater details see [4]). 

In the presented above motion equations, the angular rate is included as an 
unknown and variable coefficient rather than an input to the double oscillator 
system. Conventional control systems representation of such a dynamic system 
is shown in Fig. 1.
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Fig. 1. Conventional representation of CVGs in control systems



In order to make the equations (1) suitable for to the transfer function 
synthesis one must make the following assumptions: angular rate is small 
comparing to the primary and secondary natural frequencies so that 

2 2
1 1k d  ,     2 2

2 2k d  (2)

and rotational and Coriolis accelerations acting along primary oscillation axis 
are negligible in comparison to the accelerations from driving forces

 1 2 3 2 1g x d x q t    . (3)

With the assumptions (2) and (3) system (1) can be accurately represented 
with following transfer function for the secondary oscillations amplitude with 
respect to the input angular rate [5–7]:
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Here 20 ( )A s  is the Laplace transformation of the secondary oscillations 

amplitude, ( )s  is the input angular rate, 10q  is the amplitude of the primary 

oscillations excitation accelerations. The following additional assumption were 
made, such as equal primary and secondary natural frequencies ( 1 2k k k  ), 

equal damping ratios ( 1 2     ), resonance excitation ( k ), and constant 

angular rate.
Transfer function (4) relates angular rate to the secondary oscillations 

amplitude. However, more appropriate would be to consider transfer function 
relating unknown input angular rate to the measured angular rate, which can be 
easily obtained from (4) by dividing it on the steady state scale factor. The 
resulting transfer function is
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Although this case appears to be very specific, it still approximates 
transient process of a “tuned” CVG with accuracy suitable for most of 
applications [5, 7].

Stochastic sensor noise

Performances of CVGs can be affected by uncontrolled stochastic 
influences in two ways: as a “sensor noise”, which is added to the output of the 
system, and as a “process noise” or disturbances, which are added to the input of 
the system. The former case is shown in the figure 1.
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Fig. 2. CVG with added sensor noise and optimal filter

Here ( )W s  is the system transfer function given by (5),  is the stochastic 

sensor noise added to the CVG output,  is the angular rate, ( )G s  is the optimal 
filter yet to be developed, x is the filtered output of the system, which in ideal 
case is equal to the angular rate .

Assuming that CVG is installed on a moveable object, such as aircraft or 
land vehicle, its power spectral density can be represented as
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where B is the moveable object bandwidth. In this case sensor noise can be 
represented by the white noise as follows

2 2( )S s    . (7)

Here  is the noise to angular rate ratio (“noise–to–signal” ratio). While 
using white noise as a model of sensor noise is quite common, in some cases 
model of the noise must be more sophisticated, that is to represent high pass 
noise present above the bandwidth of the moveable object, as follows:
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Power spectral densities (7) and (8) cover most of the present in CVG 
cases of stochastic sensor noises. Nevertheless, other specific spectral densities 
can be taken into account and used in the presented below optimal filter 
synthesis procedure.

Optimal filter synthesis algorithm

General algorithm of the optimal filter synthesis for the system in Fig. 2 
has been demonstrated in [8], with respect to the stationary stochastic sensor 
noise. 

Error of the system is defined as a difference between the actual output of 
the system x and the ideal output, which is the given by the desired 
transformation H(s) of the input: 



( )x H s    .

It is also assumed that signals x and  are the centred stochastic processes 
with known spectral densities ( )S s , ( )S s , ( )S s , and ( )S s .

Performance criterion for the system is assumed to be in the form of the 
following functional:
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Here R is the weight matrix, and ( )S s  is the transposed matrix of the 
error spectral densities. Using Wiener–Khinchin theorem we can calculate the 
error spectral density from the system transfer functions and signal spectral 
densities as follows:
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where “*” designates Hermite conjugate. By means of introducing new variables 
defined as
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and substituting power spectral density (10) into (9), first variation of the 
performance criterion (9) with respect to the unknown filter related function 0G

will be
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Minimum of the performance criterion is achieved when first variation 
(12) is zero. Apparently, this is achieved when [8]
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Here 0T  is the integral part of the matrix T , and T  is the part of the 

matrix T  that contains only poles with negative imaginary part. These matrices 
are the result of the Wiener separation procedure.

Spectral densities (7) and (8) along with the suggested angular rate 
spectral density (6) can now be used to derive optimal filters based on the 
formula (13). After performing transformations according to (11), the optimal 
filters are found as:
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in case of the “white–noise” output added sensor noise, and
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in case of the “high–pass” sensor noise. Depending on which of the noise model 
is found to be the most appropriate, either filter (14) or filter (15) should be 
used.

Numerical simulations

Let us now study performances of the obtained optimal filters (14) 
and (15) in numerical simulations of the realistic CVG. In order to obtain the 
most realistic simulation results, equations (1) were used to build a numerical 
model of CVG dynamics using Simulink/Matlab. Resulting sensitive element 
model is shown in the figure 3.
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Fig. 3. Realistic CVG simulation model

In this model centrifugical accelerations were neglected and synchronous 
demodulator is added. Input angular rate is assumed to be in a form of square 



pulses. Results of numerical simulations of the “white” sensor noise filtering are 
shown in the figure 4.
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Fig. 4. Sensor noise filtering simulations
(dashed – input angular rate, gray – noised output, black – filtered output)

These simulations are performed for the =0.1 and bandwidth of the 
angular rate B=3 Hz. One should observe excellent performance of the 
synthesised filters.

Conclusions

Presented above synthesis of the filters of stochastic sensor noises resulted 
in two static filters capable of improving the performances of Coriolis vibratory 
gyroscopes in case of “white” and “high–pass” sensor noise. The latter has been 
demonstrated using explicit numerical simulations. The further analysis of the 
sensitivity of the filters performances in case of varying parameters of 
gyroscopes is viewed as a possible future development of the current research.
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